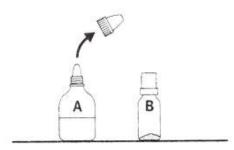


Activité 1 : un médicament à passer en solution

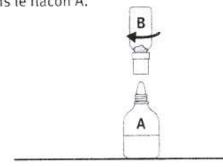
Un médicament contient deux flacons : un flacon A contenant un liquide incolore un flacon B contenant une poudre blanche Le mélange du contenu des deux flacons permet d'obtenir une solution pour pulvérisation nasale.

Voici la notice du médicament :

COMPOSITION

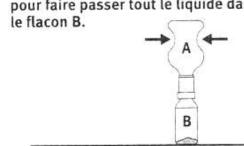

Poudre: 0,246 g Poudre et solvant pour 100 mL de solution.

FORME PHARMACEUTIQUE ET PRÉSENTATION

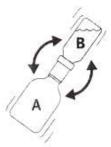

Poudre et solvant pour solution pour pulvérisation nasale. Flacon de 10 mL.

COMMENT UTILISER CE MÉDICAMENT

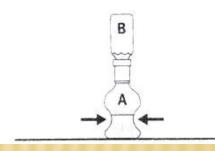
1. Ôter le bouchon du flacon A.



2. Visser à fond le flacon B dans le flacon A.



3. Retourner l'ensemble. Appuyer plusieurs fois sur le flacon A


pour faire passer tout le liquide dans

4. Agiter une dizaine de fois. Placer de nouveau le flacon A en bas.

5. Appuyer plusieurs fois sur le flacon A pour faire redescendre tout le liquide.

6. Dévisser :

Le flacon B devenu inutile peut être jeté. Le flacon A est prêt à l'emploi. Reboucher le flacon A après usage.

- Quel flacon contient le solvant ?
 C'est le flacon A qui contient le liquide pour la dissolution.
- 2) Que contient le flacon B ? (solution, solvant, soluté) Il contient la poudre à dissoudre : le soluté
- 3) Comment est obtenue la solution ? Pourquoi l'agitation est-elle nécessaire ?
- J'obtiens la solution en mélangeant soluté et solvant. J'agite pour homogénéiser la solution obtenue.
- 4) La concentration massique s'exprime en g.L⁻¹. En considérant les unités, quel rapport de grandeurs doit-on effectuer pour l'obtenir ?
- g.L⁻¹ peut s'écrire g / L et donne directement le rapport des grandeurs avec m pour la masse et V pour le volume de solution :

m / V, une masse sur un volume

COMPOSITION

FORME PHARMACEUTIQUE ET PRÉSENTATION

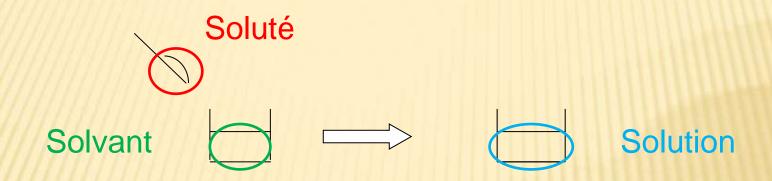
Poudre : 0,246 g Poudre et solvant pour 100 mL de solution. Poudre et solvant pour solution pour pulvérisation nasale. Flacon de 10 mL.

5) À partir des indications de la notice, calculez la concentration massique de la solution.

Je dissous 0,246 g dans 100 mL de solvant.

Données: $m_S = 0.246 \text{ g}$ $V_S = 100 \text{ mL} = 1.00.10^{-1} \text{ L}$

Relation de calcul : t_s = m_s / V_s


A.N.: $t_S = 0.246 / 1.00.10^{-1} = 2.46 \text{ g.L}^{-1}$

6) Déduisez la masse effectivement dissoute dans les 10 mL de solution obtenue.

Le volume de solution obtenue est de 10 mL soit le 1/10^{éme} de 100 mL donc la masse dissoute dans les 10 mL est le 1/10^{éme} de celle dissoute dans les 100 mL donc :

 $m_{s}' = m_{s} / 10 = 0.246 / 10 = 2.46.10^{-2} g$

Activité 2 : obtenir une solution

Activité 3 : expression et calcul de concentration

1) Exprimez et calculez la concentration molaire de 50 mL d'une solution contenant 0,05 mol de diiode.

Données : $n_S = 5.10^{-2} \text{ mol } V_S = 50 \text{ mL} = 5,0.10^{-2} \text{ L}$

Relation de calcul : $c_s = n_s / V_s$

A.N.: $c_S = 5.10^{-2} / 5,0.10^{-2} = 1 \text{ mol.L}^{-1}$ (1 CS)

2) a) Exprimez et calculez la concentration molaire de 500 mL d'une solution contenant 3,0 mol d'hydroxyde de sodium.

Données : $n(NaHO)=n_s=3.0 \text{ mol } V_S=500 \text{ mL}=5.00.10^{-1} \text{ L}$ **Relation de calcul** : $\mathbf{c_S} = \mathbf{n_S} / \mathbf{V_S}$ **A.N.** : $\mathbf{c_S} = 3 / 5.00.10^{-1} = \mathbf{6.0 mol.L^{-1}}$ (2 CS)

b) Exprimez et calculez la concentration massique de cette solution. Donnée : M(NaHO) = 40,0 g.mol⁻¹

Relation de calcul : $t_s = c_s \times M(NaHO)$ A.N. : $t_s = 6.0 \times 40.0 = 2.4.10^2 \text{ mol.L}^{-1}$ (2 CS)

3) Vous dissolvez 30 g de chlorure de sodium NaCl pour obtenir un litre de solution.

Données en g.mol⁻¹: Na : 23,0 Cl : 35,5

a) Exprimez et calculez la masse molaire du chlorure de sodium.

 $M(NaCI) = M(Na) + M(CI) = 23.0 + 35.5 = 5.85.10^{1} \text{ g.mol}^{-1}$

b) Exprimez et calculez la quantité de matière dissoute du chlorure de sodium.

Données: $M(NaHO) = 5,85.10^{1} \text{ g.mol}^{-1}$

 $m(NaHO) = 3,0.10^{1} g$

Relation de calcul : n(NaHO) = m(NaHO) / M(NaHO)

A.N.: $n(NaHO) = 3.0.10^{1} / 5.85.10^{1} = 5.1.10^{-1} mol (2 CS)$

c) Exprimez et calculez la concentration massique de la solution obtenue.

Données: $m(NaHO) = 3,0.10^{1} g$

 $V_{S} = 1.0 L$

Relation de calcul : t_s = m(NaHO) / V_s

A.N.: $t_S = 3.0.10^1 \times 1.0 = 3.0.10^1 \text{ g.L}^{-1}$ (2 CS)

d) Exprimez et calculez la concentration molaire

Relation de calcul : $c_s = t_s / M(NaHO)$

A.N.: $c_S = 3.0.10^1 / 5.85.10^1 = 5.1.10^{-1} \text{ mol.L}^{-1}$ (2 CS)

Relation de calcul : $c_s = n_s / V_s$

A.N.: $c_S = 5,1.10^{-1} / 1,0 = 5,1.10^{-1} \text{ mol.L}^{-1}$ (2 CS)

Activité 4: dissolution et dilution

1) Exprimez et calculez la masse à prélever de sulfate de cuivre $M(CuSO_4) = 249,6$ g.mol⁻¹ pour obtenir 100 mL d'une solution de 1,00.10⁻² mol.L⁻¹

Données: $c(CuSO_4) = 1,00.10^{-2} \text{ mol.L}^{-1} \text{ V}_S = 1,00.10^{-1} \text{ L}$ **Relation de calcul**: $\mathbf{m_s} = \mathbf{c_s} \times \mathbf{M_s} \times \mathbf{V_s}$ **A.N.**: $\mathbf{m_s} = 1,00.10^{-2} \times 249,6 \times 1,00.10^{-1} = 2,50.10^{-1} \text{ g} (3 \text{ CS})$

2) Exprimez et calculez le volume V₀ à prélever de solution mère de concentration 5,0.10⁻¹ mol.L⁻¹ pour préparer 100 mL d'une solution fille de concentration 5,0.10⁻² mol.L⁻¹.

Données : $c_0 = 5,0.10^{-1} \text{ mol.L}^{-1}$ $c_S = 5,0.10^{-2} \text{ mol.L}^{-1}$ $V_S = 1,00.10^{-1} \text{ L}$

Relation de calcul : $V_0 = c_S \times V_S / c_0$

Justification : la quantité matière présente dans la solution fille est celle présente dans le prélèvement de solution mère.

A.N.: $V_0 = 5,0.10^{-2} \times 1,00.10^{-1} / 5,0.10^{-1} = 1,0.10^{-1} L (2 CS)$

Activité 5 : solution saturée ou non ?

Lorsqu'il reste du soluté non dissous dans un bécher après agitation, cela signifie que la solution est saturée.

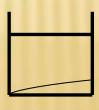
Activité 6 : solubilité et saturation

Soluté : chlorure de sodium

Solvant : eau (1L)

Solubilité: 32 g.L⁻¹

m(versée) = 22 g



Soluté : acide benzoïque

Solvant: eau (1L)

Solubilité: 2,4 g.L⁻¹

m(versée) = 3,6 g

Saturée

